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Invariance of the generalised Berry phase under unitary 
transformations: application to the time-dependent 
generalised harmonic oscillator 
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Instituto de Fisica Tebrica, Universidade Estadual Paulista, Rua Pamplona 145,01405 Slo 
Paulo, SP, Brazil 

Received 14 July 1989 

Abstract. A generalisation of the Berry phase, which reduces to the usual Berry phase in 
the adiabatic and cyclic case, is derived in a gauge-invariant way. This generalised Berry 
phase, unlike the Berry phase, is invariant under unitary transformations. A time-dependent 
generalised harmonic oscillator with a cross term in the Hamiltonian is taken as an example. 
The Hamiltonian of this system is not in general the energy. An energy, the time derivative 
of which is the power, is obtained from the equation of motion. When the system is 
quantised, the generalised Berry phase is zero, and remains invariant under unitary transfor- 
mations. On the other hand, if the energy is chosen to be the Hamiltonian, a non-zero 
generalised Berry phase is obtained, but the power is given incorrectly. In this case the 
total phase, which includes the dynamical phase and the generalised Berry phase, is equal 
in the adiabatic limit to the correct total phase. 

1. Introduction 

It has been stated in recent papers [ l ,  21 that the Berry phase [3] can be removed by 
a unitary transformation. Nevertheless, it has been shown that in the adiabatic case 
the total phase, which is the sum of the dynamical phase and the Berry phase, is 
invariant [4]. Since energy differences are observable through spectroscopic methods 
and the Berry phase is separately observable through interference experiments [5,6], 
it seems strange that a unitary transformation should change either. Indeed, one of 
the requirements of quantum mechanics is that observable effects should be invariant 
under unitary transformations. 

In this paper we show that a generalised Berry phase, called the Yang phase after 
K-H Yang [7], who first introduced it in a gauge-invariant formulation of quantum 
mechanics, is invariant under unitary transformations. The Yang phase is defined in 
general for non-adiabatic and non-cyclic processes, but reduces to the Aharonov and 
Anandan [8 ,9]  phase for cyclic, but not adiabatic, processes. For adiabatic and cyclic 
processes, it reduces to the Berry phase [3]. In time-dependent problems the Hamil- 
tonian is not necessarily the energy operator, and each transforms differently under 
time-dependent unitary transformations. The energy, defined in a gauge-invariant way 
[lo], is also invariant under unitary transformations. The total phase is therefore 
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invariant under unitary transformations, not only for adiabatic processes, but in general 
for non-adiabatic and non-cyclic processes. 

As an application of the general formalism developed here, a time-dependent 
generalised harmonic oscillator [ 11,121 is considered. By generalised we mean that, 
in addition to the squared terms in the Hamiltonian, there is a cross term involving a 
product of the coordinate and the canonical momentum. All the terms are multiplied 
by time-dependent coefficients. In time-dependent problems, the Hamiltonian is not 
necessarily the energy [13]. From Hamilton’s equations the equation of motion may 
be obtained. The equation of motion can be used to obtain an energy, which has the 
property that its time derivative is the power supplied to (or removed from) the system 
due to the time variation of the parameters of the system. This energy can be canonically 
quantised and the energy operator eigenvalue problem can be solved. When the energy 
eigenstates are used to calculate the Yang phase for this time-dependent generalised 
harmonic oscillator the result is zero. Therefore, in the special case of adiabatic and 
cyclic variation of the parameters, the Berry phase is likewise zero. The total phase is 
just the dynamical phase. This result is invariant under unitary transformations. 

On the other hand, if the energy of the time-dependent generalised harmonic 
oscillator is chosen to be equal to the Hamiltonian [ l ,  2, 11, 121, the corresponding 
Yang phase or Berry phase is non-zero. This result is also invariant under unitary 
transformations when the different transformation properties of the Hamiltonian and 
the energy are used. The choice of the energy of the generalised harmonic oscillator 
to be equal to the Hamiltonian is, however, not consistent with the physical principle 
that the time derivative of the energy should be the power supplied to (or removed 
from) the system. The difficulty with [ 1,2] is that they assume that the energy is always 
the Hamiltonian, even if a time-dependent canonical (or unitary) transformation is 
made. 

The total phase is, in general, different for the two choices of energy. In the adiabatic 
limit, however, the total phases calculated with different energy operators are equal. 
It is not correct to assume a priori that a given Hamiltonian is the energy in a 
time-dependent problem, without first obtaining the equations of motion. From the 
equations of motion, the energy can be constructed such that its time derivative is the 
power supplied to (or removed from) the system. In general the energy is different 
from the Hamiltonian. 

In section 2 a gauge-invariant derivation of the Yang phase is given. For processes 
that are adiabatic and cyclic the Yang phase reduces to the Berry phase. Both the 
energy and the Yang phase are separately invariant under unitary transformations as 
shown in section 3. The time-dependent generalised harmonic oscillator is considered 
in section 4 from both a classical and quantum mechanical viewpoint. In section 5 the 
energy of the generalised harmonic oscillator is chosen to be the Hamiltonian, and a 
non-zero Yang phase is derived. In section 6 the results are compared and discussed. 
A general analysis of the total phase is given in section 7 .  Finally, section 8 gives the 
conclusion. 

2. Gauge-invariant generalised Berry phase 

In this section a generalised Berry phase, or Yang phase, is derived in a gauge-invariant 
way [7, 101 for situations which are not necessarily adiabatic or cyclic. When the 
time-dependent parameters are varying cyclically, the Yang phase reduces to the phase 
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of Aharonov and Anandan [8,9], which is generalisation of the Berry phase to the 
non-adiabatic case. In the adiabatic case the phase of Aharonov and Anandan reduces 
to the usual Berry phase [3]. 

2.1. The Yang phase 

The Schrodinger equation for a single particle is 

H+ = ia+/at  

where natural units such that A = c = 1 are used. If the particle of mass m and charge 
q is in an (non-conservative) electromagnetic field characterised by the vector potential 
A and scalar potential A o ,  the Hamiltonian is 

1 
2m 

H =- ( p  - qA)'+ V ( r )  + qAo(r, t ) .  (2.2) 

The (conservative) potential energy V ( r )  in equation (2.2) must be specified, but it 
can be of gravitational, nuclear or electrostatic origin. The kinetic momentum is 
mu = p  - qA, where p is the canonical momentum operator p = -iV. For this time- 
dependent problem, the Hamiltonian is not in general the energy. The energy operator 
is defined as the sum of the kinetic and the (conservative) potential energies: 

1 
2m 

8 =- ( p  - qA)2+ V ( r ) .  (2.3) 

When equations (2.2) and (2.3) are compared it can be seen that the energy operator 
is 

8 = H - qAo (2.4) 
i.e. the Hamiltonian minus the scalar potential of the external time-dependent (non- 
conservative) electromagnetic field [ 131. The energy eigenvalue problem is [7] 

%+,= E,*, (2.5) 
where E,  is the energy eigenvalue and +, is the corresponding energy eigenstate. Since 
the vector potential in equation (2.3) of the external electromagnetic field can depend 
on the time, the energy operator, eigenstates, and eigenenergies generally depend on 
the time as a parameter. 

The probability amplitude for finding the system in an energy eigenstate at time t 
is 

cn ( t )  = ( + n  (t)l+(t)) (2.6) 
which is the inner product between the energy eigenstate $,,( t )  and the solution to the 
Schrodinger equation $( t )  at time t. If equation (2.6) is multiplied by $,, and summed 
over n, we obtain 

(2.7) 

where the completeness of the energy eigenstates is used. When equation (2.7) is 
substituted into the Schrodinger equation in (2.1) and equations (2.4) and (2.5) are 
used, the equation of motion obtained for the probability amplitude c, is 
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where 

Pn(t)  = ($nl( ia /a t  -4Ao)ILrl) (2.9) 
is the time derivative of the generalised Berry phase or Yang phase y,,( t ) .  From equation 
(2.8) we can see that the time dependence of the Hamiltonian has three effects. (i)  It 
gives in general a time-dependent energy eigenvalue E,(  t ) .  (ii) It induces transitions 
from the energy eigenstate $k to the state $,,. (iii) It gives a Yang phase m ( t )  if the 
operator which induces transitions has a diagonal element. 

We can define the amplitude C, in the interaction picture by 

dt‘e,(t’)+iy,,(t) 

where the gauge-invariant Yang phase is 

m ( t )  = lo‘ dt’($fll(id/ar’- 4AoMn) 

(2.10) 

(2.11) 

by integration of equation (2.9). When equation (2.10) is substituted into equation 
(2.8), the result is 

icn = - 1 ($nl(ia/at-qAO)$k) 
k f n  

The right-hand side of equation (2.12) describes transitions from other states. In the 
non-degenerate case the matrix element in equation (2.12) can be written for n # k as 

($nl(ia/at -qAO)$k)=-i(En -Ek)- l ($nIP$k)  (2.13) 

where the power operator P is in general defined as 

P=[d/dt+iqAo,  %‘I. (2.14) 

When equation (2.13) is substituted into equation (2.12) for the amplitude in the 
interaction picture, we obtain 

icn= 1 i(En-&k)-l($nlP$k) 
k # n  

(2.15) 

It is thus not necessary to restrict our attention to the adiabatic case, where transitions 
between states are neglected, because the Yang phase occurs in equation (2.10) for 
the probability amplitude, and differences of the Yang phase Y k ( t )  - y,,(t)  also enter 
on the right-hand side of equation (2.15). The total phase in equation (2.10) is the 
sum of the dynamical phase, the Yang phase, and arg C,( t ) .  In some cases, including 
the adiabatic case, the phase arg C,(t)  is independent of the time. 

If the particle is an electromagnetic field, the power operator in equation (2.14) 
becomes [7,10] 

(2.16) P = f q (  U E + E - U )  
where E is the electric field 

E = -VA,-aA/at. (2.17) 
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The velocity operator U in equation (2.16) is 

u = m - ’ ( p  - q A )  (2.18) 

where p is the canonical momentum operator. Equation (2.16) is the Hermitian form 
of the classical expression for the power in this case. 

2.2. The Berry phase 

The dependence on time in this problem can be due to the time dependence of 
parameters X( t )  = {XI( t), X,( t ) ,  X,(  t), . . . }. These parameters can be varied through 
a cycle, so that after one period T they return to their original values X( T )  = X(0). 
In this case the Yang phase in equation (2.11) becomes 

(2.19) 

which is the phase obtained by Aharonov and Anandan [8,9]. They consider, however, 
the case where the energy operator in equation (2.3) consists only of the kinetic energy. 
Here the eigenstate in equation (2.19) is an eigenstate of the full energy operator in 
equation (2.3), which also includes the conservative potential energy V (  r ) .  

We now specialise to a gauge in which the scalar potential A, = 0, so that the energy 
operator in equation (2.4) is equal to the Hamiltonian. Equation (2.19) then becomes 

(2.20) 

where the overdot denotes the partial time derivative. Equation (2.20) has the form of 
the phase obtained by Berry [3], but it applies also in the non-adiabatic case. 

If the energy eigenfunction $,(x, t ;  X( t ) )  in equation (2.20), where x are the particle 
coordinates, depends on the time through the external parameters X( t )  and also has 
explicit time dependence, equation (2.20) can be written as 

r r7 
y,,( T )  = f dX.  a - J dt  a, .  

fl 
(2.21) 

The ‘vector potential’ in parameter space is defined as 

a(X, t )  = ($flIiwl/W (2.22) 

and the ‘scalar potential’ in parameter space is 

a o v ,  t )  = --($rlliWfl)* (2.23) 

The a, in equation (2.23) acts only on the explicit time dependence of $,,. Equation 
(2.21) can be written in a more compact form as 

?,(TI= -++a, (2.24) 

where X p  = ( t ,  -X) and a, = ( U , ,  a ) .  The path r in the space {Xp} goes from (0, X ( O ) }  
to { T, X(  T ) } ,  where X(  T )  = X(0) and the time T of one period is identified with the 
time zero. The path r in equation (2.24) is therefore closed, and the integral is over 
one cycle. The metric in parameter space used here is gPy = diag( 1, -1 ,  -1, . . . , - 1 ) .  
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Equations (2.21) and (2.24) are invariant under gauge transformations in parameter 
space 

a; = a, +ag/aXp (2.25) 

where g is a differentiable function of X ”  satisfying 

fr dX, ag/aXp = 0. (2.26) 

The gauge transformations in parameter space in equation (2.25) on the connection 
a& are different from gauge transformations on the electromagnetic scalar and vector 
potentials A,  = (Ao, A )  under which the Schrodinger equation in (2.1) is form invariant. 
By Stokes’ theorem in parameter space the generalised Berry phase in equation (2.24) 
can be written as the surface integral 

y n ( 7 - 1  = - i, d(TWV2L, (2.27) 

where the boundary of the surface S is the closed path r in the space {X,}. The 
curvature T,,, is an antisymmetric tensor defined as 

Tpv = aa,/aX” -aa,ldXp (2.28) 
which can be written as a 2-form. The curvature in equation (2.28) is invariant under 
gauge transformations in parameter space in equation (2.25). The formulation given 
here is similar to that of Ralston [14], except that the a, term in equation (2.21) is not 
related to the dynamical phase, and to that of Bhattacharjee and Sen [ 151 for the case 
of Hannay’s angle. 

The total phase of the probability amplitude in equation (2.10) in the cyclic case is 

argc,(T)= - d t ’E , ( t ’ )+y , (T )+argC, (T ) .  (2.29) 

The first term on the right-hand side is the dynamical phase, the second term is the 
Yang phase (or generalised Berry phase), and the third term arg Cn(t )  is the phase 
which can be obtained from the solution of equation (2.15). If the parameters X ( t )  
vary adiabatically and there is no explicit time dependence in $,,, the matrix elements 
on the right-hand side in equation (2.12) or (2.15) can be neglected. The result is that 
C,(t) is a constant, Cn(0) .  Therefore, equation (2.10) becomes 

I: 

dt’E,(t’)+iy,(T) (2.30) 

where y,( T )  is the usual Berry phase. 
In the adiabatic case we can always prepare our system at time t = 0 in a given 

eigenstate $(O) = $ b k ( O ) ,  where c,(O) = & k .  From equation (2.30) the expansion for 
$( T )  in equation (2.7) collapses to one term, which is 

(2.31) 

where the energy eigenstate in equation (2.5) is Gk(  T )  = I I / k ( O )  because the parameters 
X ( t )  are carried through a complete cycle. Equation (2.31) is the adiabatic theorem 
which includes the Berry phase. The derivation here shows how the Yang phase in 
the general case reduces to the Berry phase for adiabatic and cyclic variation of the 
time-dependent parameters. 
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3. Invariance under unitary transformations 

The equations of section 2 are form invariant under unitary transformations, which 
cannot change the physical content of the theory. Observables, like the energy and the 
Berry phase, must be separately invariant under unitary transformations. Energy 
differences can be measured spectroscopically, and the Berry phase can be measured 
by interference experiments. The idea that a unitary transformation can change the 
dynamical phase and also the Berry phase is due to using the Hamiltonian, instead of 
the energy operator, to obtain the energy eigenvalues [ l l ,  121. 

Under a unitary transformation U, which can in general depend on the spatial 
coordinates, momentum operator, and the time, the wavefunction transforms as 

+'= U+. (3.1) 

When U depends only on the spatial coordinates and the time, equation (3.1) is a 
gauge transformation on the wavefunction. The Schrodinger equation in (2.1) is 
transformed to 

HI+'= ia+'/at (3.2) 

H ' =  UHUt- iU(aUt /a t ) .  (3.3) 

where the new Hamiltonian H' is related to the old Hamiltonian H by 

The Hamiltonian in equation (2.2) can be used in equation (3.3) to obtain 

1 
2m 

H ' =  - ( p  - qA')'+ V'(r) + qAb. (3.4) 

The (conservative) potential energy transforms as 

V' = uvu (3.5) 

which reduces to V' = V when U is a gauge transformation that does not depend on 
the momentum operator. The potentials in equation (3.4) transform as 

A; = UA, U t  - ( i /q)  U(a,  U ' )  (3.6) 
for p = 0, 1, 2, 3 .  The derivative is defined as a, = a/ax'*, where x p  = (xo, x', x2, x3) 
and xo= t. The metric used here is 8," =diag(l ,  -1, -1, -1). Equation (3.6) has the 
same form as the transformation law for potentials in a non-Abelian gauge field theory, 
but here the non-commutativity arises because U can depend on the momentum 
operator. If U depends only on the spatial variables and the time, equation (3.6) 
reduces to the usual gauge transformation of electromagnetism. 

On the other hand, the energy operator in equation (2.3) transforms under unitary 
transformations as 

1 
2m 

8'= U 8 U t = - ( p - q A ' ) 2 +  V ' ( r ) .  (3.7) 

The energy eigenvalue problem in equation (2.5) transforms to 

st*:, = E n * ;  (3.8) 
where the energy eigenvalue E,  is invariant. The energy eigenstate transforms as 
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which is the same as equation (3.1) for 4’. The probability amplitude c, ( t )  in equation 
(2.6) is therefore invariant under the transformations in equations (3.1) and (3.9): 

cfI(t) = (+,( t ) l+( t ) )  = (+L(t) l+’( t ) )  (3.10) 

as long as U is unitary. The equation of motion for C, in equation (2.12) is invariant 
under the unitary transformation, because the matrix element 

(3.11) 

in equation (2.12) is invariant. From equation (3.11) it follows that the Yang phase in 
equation (2.1 1) is also invariant under the unitary transformation 

(+,l(ia/at - qAo)+d = (+’,l(ia/at - qAb)+i) 

(3.12) 

where Ab is given in equation (3.6). Therefore, under a unitary transformation the 
energy eigenvalue and the Yang phase in equations (3.8) and (3.12), respectively, are 
separately invariant. This invariance also holds for the adiabatic and cyclic case where 
the Yang phase reduces to the Berry phase. 

4. Generalised time-dependent harmonic oscillator 

The generalised time-dependent harmonic oscillator has been previously treated as an 
example [ l l ,  121. It has been shown that the Berry phase, defined in the usual way, 
can be removed by a unitary transformation [l,  21. The unitary transformation also 
changes the dynamical phase in the adiabatic case in such a way that the total phase 
is unchanged [4]. We apply the analysis of section 3 and show that when the energy 
operator, instead of the Hamiltonian, is used to obtain the energy eigenstates, both 
the Yang phase and the energy eigenvalues are separately invariant under unitary 
transformations. This conclusion is still valid in the adiabatic and cyclic case, where 
the Yang phase reduces to the Berry phase. The Yang phase, and consequently the 
Berry phase, is zero for this problem. 

4.1. Hamiltonian and equations of motion 

The classical Hamiltonian for the generalised time-dependent harmonic oscillator is 

H = $ ( a (  t)p*+ 2b( t)px + c( t)x2) (4.1) 
where x is a generalised coordinate, p is the canonical momentum conjugate to x, and 
a, b, c are parameters all of which depend on the time t .  From Hamilton’s equations, 
the velocity is 

aH 
d P  

x=-=a  + P bx 

and the time derivative of the canonical momentum is 

aH 
ax 

$=  --=-b p - cx. 

(4.2) 

(4.3) 

When equation (4.2) is solved for p and substituted into equation (4.3), the resulting 

(4.4) 

equation of motion is 
mf = - m i  - kx 
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where m = a-’ is the time-dependent mass and the overdot denotes differentiation with 
respect to time. The spring ‘constant’ k is a function of time defined as 

and must be positive. The term -nix on the right-hand side of equation (4.4) is a 
‘fictitious force’ which comes from the time rate of change of the momentum d( m x ) / d t  = 
mx + mx. If ni < 0 the term -mx in equation (4.4) is positive. It is like the thrust for 
a rocket in which the relative velocity between the mass m and the mass expelled is 
x (i.e. the mass expelled is at rest). If > 0 the term -mx in equation (4.4) is negative. 
It is like a friction force for a dampled harmonic oscillator. The mass increase of the 
oscillator could be due, for example, to the absorption of a gas. Equation (4.4) shows 
that the Hamiltonian of equation (4.1) describes the motion of a harmonic oscillator 
with a time-dependent mass m = a-’ and spring ‘constant’ k. 

4.2. Energy 

The energy 8 can be constructed, as in the time-independent case, by multiplying the 
equation of motion in equation (4.4) by the velocity xi-. If the energy is chosen to be 

8 =$mx’+fkx2 (4.6) 
which is the sum of kinetic and potential energies, its time rate of change is 

(4.7) 

The right-hand side of equation (4.7) is the total power P which is supplied to (or 
removed from) the particle. The first term on the right-hand side of equation (4.7) is 
the power supplied to the oscillator due to the change in the mass at constant velocity, 
the second term is the power supplied due to the change in the spring ‘constant’ at 
constant displacement, and the last term is the power Ffi due to the ‘fictitious force’ 
Ff = -mx. When the time-dependent parameters a, b and c in the Hamiltonian in 
equation (4.1) become constants, the power in equation (4.7) is zero and the energy 
is conserved. 

The energy in equation (4.6) can be expressed in terms of the canonical momentum 
in equation (4.2), which gives 

1 
2m 

8 = - ( p  + bx/ a)’ + $kX2. (4.8) 

When the system is quantised, this expression is used to obtain the energy operator. 

4.3. Lagrangian 

The Lagrangian L for the system may be obtained from 

L = p X - H .  (4.9) 
When equations (4.1) for the Hamiltonian and (4.2) for the canonical momentum are 
used in equation (4.9), the result can be written as 

(4.10) 
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The total time derivative in equation (4.10) does not change the dynamics. A new 
Lagrangian can be defined as 

dA 
L’= L+- 

dt  
(4.11) 

where 

A = bx2 /2a  (4.12) 

which is a gauge (or canonical) transformation. From equations (4.10)-(4.12) the new 
Lagrangian L’ is 

L’ = “x2  2 - ‘ /&2  2 (4.13) 

which is the standard Lagrangian for a harmonic oscillator. The Euler-Lagrange 
equation with the Lagrangian in either equation (4.10) or (4.13) gives the equation of 
motion in (4.4). 

4.4. New Hamiltonian 

The new Hamiltonian H ’  corresponding to the new Lagrangian L’ in equation (4.13) 
can be constructed by the usual procedure. The new canonical momentum p’ is 

(4.14) 

which is the same as the kinetic momentum. The new Hamiltonian H‘ is 

H ’ = p ’ x  - L’ (4.15) 

which with equations (4.13) and (4.14) gives 

(4.16) 

Equation (4.16) is the standard Hamiltonian of a harmonic oscillator with a (time- 
dependent) mass m = a-’ and spring ‘constant’ k. 

The energy is still given by equation (4.6), which in terms of the new canonical 
momentum p ‘  in equation (4.14) is 

(4.17) 

Equation (4.17) for the energy is the same as the new Hamiltonian in equation (4.16) 

H’= 8 (4.18) 

so that we may identify them in this gauge. The new canonical momentum p ’  in 
equation (4.14) is related to the old canonical momentum p in equation (4.2) by 

p ’  = p + b x / a .  (4.19) 

When equation (4.19) is substituted into equation (4.17), the energy in equation (4.8) 
is obtained. 
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4.5. Canonical quan t isat ion 

The particle can be canonically quantised by replacing the canonical momentum p by 
the operator p^ = -ia/ax. Then the energy in equation (4.8) becomes an operator 8 
which satisfies the eigenvalue problem 

8*n  = GI*,. (4.20) 

Equation (4.20) is form invariant under a unitary transformation 

r*; = E,*:, (4.21) 

where the eigenvalue E ,  is invariant. The energy eigenfunction transforms as in equation 
(3.9) 

ILL = exp(iN+, (4.22) 

and the energy operator transforms as in equation (3 .7)  

8’ = exp(iA) 8 exp( -iA) (4.23) 

with U = exp(ih). If A is given by equation (4.12), then 8’ is the same as the standard 
Hamiltonian for a harmonic oscillator 

(4.24) 

but here m and k depend on the time as a parameter. The solutions to equation (4.21) 
are real eigenfunctions with eigenenergies 

E ,  = ( n + f ) w  (4.25) 

for n = 0 , 1 , 2 , 3 , .  . . , where the time-dependent angular frequency is w = (k/m)”’. 

4.6. The Yangphase 

The Yang phase can be calculated for the canonically transformed problem, in which 
the new Hamiltonian in equation (4.16) is equal to the energy in equation (4.17). In 
this case the scalar potential in equation (2.4) is qAb = H’- 8 = 0 because of equation 
(4.18). The Yang phase in equation (3.12) is therefore 

(4.26) 

which may be proved as follows. The quantity ($;I$;), where the overdot denotes the 
partial time derivative, is real because +:, in equation (4.21) is real. On the other hand, 
since I); is normalised to unity, we have 

so (+;Id;) is pure imaginary. The only way that a quantity can be both real and 
imaginary is if it is zero. Therefore, the Yang phase in equation (4.26) is zero. If the 
parameters are varied adiabatically and cyclically, the Yang phase reduces to the Berry 
phase, which is also zero. In general, if the scalar potential is zero and the wavefunction 
is real, the Yang or Berry phase is zero. 
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If we use the expression in equation (2.11) for the Yang phase, we also get zero, 
because the Yang phase is invariant under unitary transformations. In this case the 
scalar potential A. in equation (2.4) is the difference between the Hamiltonian H in 
equation (4.1) and the energy 8 in equation (4.8), which gives 

1 d  b dA 
qAo =-[ - ( -)]x2 = - 

2 d t  a d t  
(4.28) 

where A is given by equation (4.12). The quantity ($,,li&,) in equation (2.11) can be 
calculated using the energy eigenfunction in equation (4.22), which gives 

(4,  I (ia/a t )  AI) = (4% I ( W d  t )  $ n )  + ($4 (id/d t )  $L). (4.29) 

The last term on the right-hand side of equation (4.29) is zero because it is both real 
and imaginary. The Yang phase in equation (2.11) is thus 

dt’(($n 1 ( WW$J - I(dA/d~’)$,,)) 
J o  

= O  
(4.30) 

because of equation (4.28). Therefore, the Yang phase m ( t )  is zero regardless of 
whether the old or new energy eigenfunctions and scalar potentials are used. The total 
phase in equation (2.10) is given by the sum of the dynamical phase plus arg C,(t) .  
The dynamical phase is also the same for both the old and new eigenfunctions because 
the energy in equation (4.25) is invariant under a unitary transformation on equation 
(4.20). The phase arg C,( t )  is also invariant under unitary transformations because of 
equation (3.11). 

4.7. Probability amplitudes 

The equation for the probability amplitudes C,, in the interaction picture in equation 
(2.10) is given by equation (2.12). The matrix elements in that equation can be evaluated 
explicitly for the generalised harmonic oscillator, and are 

($fll(ialat - qAo)$Lk) 

(4.31) 

When k =  n, the matrix element is zero, which shows that the Yang phase indeed 
vanishes. 

When equation (4.31) is substituted into equation (2.12), we obtain a differential 
difference equation for the probability amplitudes 

i 
iCn =-[dln(mw)/dt]  4 jn(n-1)]1’2C,,-2exp(2i {o‘dtfw(t’)) 

-[(n + l ) ( n  +2)]1/2Cnt2 exp( -2i lo‘ dtfw(t’))] (4.32) 

where C-, , C-*, . . . are all zero. In the case where the parameter mw is varying slowly 
in time, the right-hand side of equation (4.32) can be neglected. Then C,, is a constant, 
and the probability amplitude c f l ( T )  varies as in equation (2.30) with m ( T )  = O .  In 
the non-adiabatic case, the probability amplitude for the state n is coupled to the 
probability amplitudes for the states n *2, and so, in general, arg C,(t)  depends on 
the time. 
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5. Energy chosen equal to the Hamiltonian 

In this section the energy of the generalised time-dependent harmonic oscillator is 
chosen to be equal to the Hamiltonian in equation ( 4 . 1 ) .  With this choice the Yang 
phase (or generalised Berry phase) is different from zero. The energy eigenvalues are 
also different from those in equation ( 4 . 2 5 ) .  The energy operator and the Hamiltonian 
are still two distinct operators, which transform under unitary transformations as in 
equations ( 3 . 7 )  and ( 3 . 3 ) ,  respectively. After a time-dependent unitary transformation, 
the new energy operator and the new Hamiltonian are no longer equal. The energy 
eigenvalues and the Yang phase (or generalised Berry phase) nevertheless remain 
invariant under unitary transformations. 

5.1. Hamiltonian and energy 

In this approach the generalised time-dependent harmonic oscillator is assumed to 
describe a phxsical situation such that the Hamiltonian H in equation ( 4 . 1 )  is equal 
to the energy i5 of the particle. Whether or not this assumption is consistent is discussed 
in subsection 6.1 .  The Hamiltonian H in equation ( 4 . 1 )  can be expressed in terms of 
the velocity by using equation ( 4 . 2 )  for p ,  which gives the energy @, 

H = g = i m i 2 + f , ( x 2  ( 5 . 1 )  
where the mass is m = a - ' .  The time-dependent spring 'constant' k" is 

b2 
a 

k = c - - > O  

which is different from k in equation ( 4 . 5 ) ,  but reduces to it when b l a  is independent 
of the time. The energy @ can be written in terms of the canonical momentum in 
equation ( 4 . 2 )  as 

1 
2 m  

@ = - ( p  + bx/ a )2  + fcx' ( 5 . 3 )  

which is necessary for canonical quantisation. 

operator p̂  = -ia/ax. The energy eigenvalue problem is thus 

If we make the unitary transformation of equations ( 4 . 2 2 )  and (4 .23)  on in and @, 
respectively, we obtain the new eigenvalue problem 

The energy operator is obtained by replacing the canonical momentum p with the 

@(in = En&. ( 5 . 4 )  

@$; = En$; ( 5 . 5 )  
where the energy eigenvalue En is invariant. The unitarily transformed energy operator 
is 

from equation ( 4 . 2 3 ) .  The solutions to equation ( 5 . 5 )  are real eigenfunctions with 
energies 

E,, = ( n  + f ) G  ( 5 . 7 )  
where n = 0, 1 , 2 ,  . . . , and the time-dependent angular frequency is 6 = ( f f / m ) " 2 .  



4262 D H Kobe 

The Hamiltonian H in equation (4.1) transforms under unitary transformations as 
in equation (3.3). When the unitary transformation U = exp(iA), where A is given by 
equation (4.12), is used in equation (3.3), the new Hamiltonian is 

which is the same as equation (4.24). Equation (5.8) differs from equation (5.6). After 
a time-dependent unitary transformation, the new Hamiltonian and the new energy 
are not equal, even though the old ones were. 

5.2. The Yangphase 

The Yang phase in equation (2.11) in this case reduces to 

.in ( t ) = JOr d t'( in I (ia/ a t I )  i,, ) (5.9) 

because the scalar potential in equation (2.4) is qAo = H - 8 = 0 from equation (5.1). 
The energy eigenfunction in transforms as in equation (4.22), where A is given by 
equation (4.12). The Yang phase in equation (5.9) can be calculated in a way similar 
to equations (4.29) and (4.30), and is 

The expectation value in equation (5.10) is 

($nlx*&,) = (mG)- '(n +i). 
The Yang phase in equation (5.10) is therefore 

' ( ab  - bd) 
2 a (  ca - b2)"2 

T n ( t ) = ( n + i )  lo dt'  

(5.10) 

(5.11) 

(5.12) 

when equations (5.2) and (5.11) are used. Equation (5.12) is the result of Berry [ll].  
The Yang phase is invariant under a unitary transformation. When equation (3.12) 

is used to calculate the Yang phase, we obtain 

(5.13) 

because (JkIGi) is zero from equation (4.27). The new scalar potential 26 given by 
equation (3.6) for p = 0 is 

(5.14) 

because a, = 0 and U = exp(iA). When equation (5.14) is substituted into equation 
(5.13), the same Yang phase as given in equations (5.10) and (5.12) is obtained because 
A is given by equation (4.12). Therefore, the Yang phase (or generalised Berry phase) 
is invariant under the unitary transformation. In the adiabatic and cyclic case the Yang 
phase reduces to the Berry phase, so the Berry phase is also invariant under unitary 
transformations. 



Unitary invariance of generalised Berry phase 4263 

5.3. Probability amplitudes 

The equation for the probability amplitudes C,, in the interaction picture in equation 
(2.10) is given by equation (2.12). The matrix elements in that equation can be evaluated 
explicitly for the generalised harmonic oscillator in this case, and are 

(Jfll(ialat - 4 A O ) J k )  

where 

(5.16) 

is the time derivative of the Yang phase in equation (5.10) for n = 0. When n = k 
equation ( 5 . 1 5 )  gives the time derivative of the Yang phase in equation (5.12). 

When equation ( 5 . 1 5 )  is substituted into equation (2.12) we obtain a differential 
difference equation for the probability amplitudes 

[ n (  n - 1)]”2en-2 exp dt’  G( t’) - 4i.j10( t )  

xenp(-2i ~ o t d t ’ ~ ( t f ) + 4 i ~ o ( t )  (5.17) 

where C-I , C-z, . . . are all zero. In the non-adiabatic case, the probability amplitude 
for the state n is coupled to the probability amplitudes for the states n * 2. The solution 
of equation (5.17) gives e,,, which can be used in equation (2.10) for the probability 
amplitude E,,( t ) .  The total phase of ?,,( t )  in equation (2.10) is 

- I  

( 5 . 1 8 )  

In the case where the parameters mG and To are varying slowly in time, the right-hand 
side of equation (5.17) can be neglected. The solution of equation (5.17) is then 
C , ( t )  = e,,(O), so arg C,,(t) in equation ( 5 . 1 8 )  is independent of the time. 

Equation (5.17) reduces to equation (4.32) for C, when q O = O  and G is replaced 
by W .  The solution of equation (5.17) is different from the solution of equation (4.32) 
because the coupling terms in equation (5.17) are complex, while in equation (4.32) 
they are imaginary. 

6. Comparison 

In this section a comparison between the approaches used in sections 4 and 5 is made. 
First the energies are examined, and then the phases. 
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6.1. Energy 

In the approach of section 5 the energy @ is assumed to be equal to the Hamiltonian 
H in equation (4.1). If the time derivative of the energy @ in equation (5.1) is taken, 
we obtain 

The total 
left-hand 

d @  d 
d t  d t  - *hi* +;kx2 + (-hi)$ +- [{( (- k)x2]. 

time derivative on the right-hand side of equation (6.1) can be taken to the 
side, which gives 

d 
- [ + ;( k - i)x2] = p 
d t  

where P is the total power in equation (4.7) which is supplied to (or removed from) 
the particle. Equation (6.2) is the same as equation (4.7) because the quantity in square 
brackets on the left-hand side is the energy 8 in equation (4.6) 

8= @ + $ ( k - c ) x 2  (6.3) 

from equation (5.1). Only the first three terms on the right-hand side of equation (6.1) 
have a physical interpretation in terms of power. The total time derivative on the 
right-hand side of equation (6.1) shows that the energy @ used in section 5 is not the 
total energy. The total energy 8 is used in section 4. 

6.2. Total phases 

In this subsection the total phases of the probability amplitudes in sections 4 and 5 
are compared. 

The total phase 0, of the probability amplitude c, ( t )  in equation (2.10) is the sum 
of the dynamical phase, Yang phase, and arg C,  ( t ) :  

0, = arg c , ( t )  = - dt '  ~ , ( t ' ) +  Y,(t)+arg C,,(t). (6.4) ld 
0, = - ( n + i )  lo' dt 'w( t ' )+arg  C,(t). 

For the quantised particle in section 4, the Yang phase in equation (4.24) is zero. From 
equation (4.25) the total phase in equation (6.4) is 

(6.5) 

In the adiabatic case arg C,( t )  = arg C,(O), which can be chosen to be zero as an initial 
condition. 

In section 5 the total phase 6 ,  for the quantised particle whose energy is the 
Hamiltonian in equation (5.1) is 

6 , = a r g & , ( f ) = - ( n + t )  d t '&( t ' )+(n+; )  (6.6) 

from equation (5.7) for the energy and equation (5.10) for the Yang phase. The 
time-dependent dimensionless parameter z (  t )  in equation (6.6) is defined as 

a d  
z ( t )  = 7 - (4)). 

w d t  a 
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The frequency 3 of this oscillator is 

3 = o( 1 + z)l’2 

4265 

(6.8) 

from equations (5.2) and (4.5). Equation (6.6) can be rewritten as 

I: 6, = -( n +f) dt’ w (  t ’ ) [ (  1 + z ) ’”- f z (  1 + z ) - ” ~ ]  +arg e,( t ) .  (6.9) 

In equation (6.9) the first term in the square brackets is due to the dynamical phase 
and the second term is due to the Yang phase. 

If the parameter z<< 1, which would be the case for an adiabatic variation in the 
parameter a / 6 ,  the square roots in equation (6.9) can be expanded. The total phase 
in equation (6.9) then becomes 

(6.10) 

In the adiabatic limit the phase 6, is equal to the phase @, in equation (6.5) 
I 

@, = @, (6.11) 

because the terms of order z 2  and higher are negligible and in the adiabatic limit 
arg 6, ( t )  = arg e,(O) = 0 and arg Cn( t )  = arg C, (0) = 0 by an appropriate choice of the 
initial conditions. If the parameters a, 6 and c are not varying adiabatically, the total 
phase @, of section 4 in equation (6.5) is not in general equal to the total phase 6, 
of section 5 in equation (6.6). The correct total phase is CP, because the correct energy 
operator is used in section 4. 

7. General analysis of the total phase 

In this section we give a general proof of the equality in the adiabatic case of the total 
phases calculated using eigenstates of the energy operator and the Hamiltonian. 

7.1. Gauge-dependent and gauge-invariant phases 

It is usually assumed [ l ,  21 that the Hamiltonian H is the energy operator for the 
system, and that it satisfies the eigenvalue problem 

H(Pn = EnQn (7.1) 

where E,, is the eigenvalue and (P, is the eigenstate. The Hamiltonian H depends on 
the time, so that the total phase 6, in equation (2.10) is 

in the general case which is not necessarily adiabatic or cyclic. This expression for the 
total phase is not invariant under time-dependent unitary transformations on the 
eigenstates and operators, because the Hamiltonian transforms by equation (3.3). 
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The gauge-invariant total phase @, is based on using the energy operator 8 in 
equation (2.3), which satisfies the eigenvalue problem of equation (2.5). The gauge- 
invariant total phase @, in equation (2.10) is the sum of the dynamical phase, the 
Yang phase and arg C, ( t )  

@, = - dt’ ~ , ( t ’ ) +  dt’(+,,l(ia/dt’-qA,)+,)+arg C , ( t ) .  (7.3) id 5: 
In section 3 the terms in this phase are shown to be separately invariant under unitary 
transformations. The relationship between the gauge-dependent total phase in equation 
(7.2) and the gauge-invariant one in equation (7.3) can be investigated by perturbation 
theory. 

7.2. Perturbation expansion of the gauge-dependent total phase 

The total Hamiltonian H can be written as an unperturbed Hamiltonian Ho and a 
perturbation ‘Y as 

H = Ho+ V. (7.4) 

HOP: = E:cp: (7.5) 

The unperturbed Hamiltonian satisfies the eigenvalue problem 

where E: is the unperturbed eigenvalue and cp: is the unperturbed eigenstate. If we 
choose the unperturbed Hamiltonian Ho to be the energy operator E in equation (2.3), 
then by equation (2.4) the perturbation is V =  qAo. By equation (2.5) the unperturbed 
eigenvalue E: = E ,  is the energy eigenvalue, and the unperturbed eigenstate cp: = +, 
is the energy eigenstate. 

The perturbation expansion of the eigenvalue E, of the Hamiltonian in equation 
(7.1) in first order is 

E,  = E:+(cp:IVp:)+. . . 
=E,+(+,IqAo+,)+.. . .  (7.6) 

The perturbation expansion in zero order of the eigenstate for the second term in the 
total phase of equation (7.2) is 

r ‘  dt’(cp,l(id/at’)(p,)= r‘dt‘(cp:l(ia/at’)cp0)+. . .= r ‘  dt’(+,I(ia/dt’)+,)+. . . (7.7) 
JO JO 

where only the lowest-order term 
expansion of the phase in equation 

dtf(&,(t’)+(+,I4A0+,)+. 

r f  

J o  

is explicitly shown. Therefore, the perturbation 
(7.2) is 

’ . )  

dt‘((+,l(ia/ar‘)+,,)+ . . . ) + (  arg C,,(t)+ . . . ) .  (7.8) 

The ‘energy correction’ in equation (7.8) can be associated with the second integral 
to give the gauge-invariant Yang phase. Equation (7.8) can then be expressed in terms 
of 0, in equation (7.3),  so that [4] 

+Jo 

II 

@ , = O n +  . . .  (7.9) 
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where the dots denote higher-order terms in perturbation theory. If the perturbation 
qAo vanishes in the adiabatic limit, then the two phases in equation (7.9) are equal. 

In section 6.2 the perturbation qA, is given by equation (4.28), which can be 
written as 

(7.10) 

from equation (6.7) for z. Since the perturbation is proportional to z, which vanishes 
in the adiabatic limit, we can now understand the equality of phases in equation (6.1 1). 
The difference between the two phases in equation (6.10) is of second order in the 
parameter z(  t ) .  

8. Conclusion 

It has been shown that the energy and the Yang phase (generalised Berry phase) are 
separately invariant under unitary transformations. The invariance is required because 
both energy differences and phase differences can be separately observed. Energy 
differences can be measured spectroscopically, while phase differences can be measured 
by doing an interference experiment. 

As an example, the time-dependent generalised harmonic oscillator is considered, 
both classically and quantum mechanically. A proper choice of energy in this problem 
gives a zero Yang phase (or generalised Berry phase) and this result is invariant under 
unitary transformations. On the other hand, if the energy is chosen to be the original 
Hamiltonian, with a cross term between the coordinate and the canonical momentum, 
a non-zero Yang phase or generalised Berry phase is obtained, which is also invariant 
under unitary transformations. This choice of the energy, however, does not lead to a 
proper expression for the power. 

The Hamiltonian, which governs the time development of the system, is in general 
different from the energy. The energy has to be defined on physical grounds as the 
quantity whose time derivative is equal to the power supplied to (or removed from) 
the system due to the time variation of the external parameters. Just as the quantum 
mechanical Hamiltonian is obtained from the classical Hamiltonian by the canonical 
quantisation of the canonical momentum, the energy operator is obtained from the 
classical energy by canonical quantisation. The energy and the Hamiltonian transform 
differently under unitary (or canonical) transformations. Under a unitary transforma- 
tion the energy operator transforms in such a way that the energy eigenvalues are 
invariant, while the Hamiltonian transforms so that the Schrodinger equation is form 
invariant. The Yang phase (or generalised Berry phase) is defined here so that it is 
also invariant under unitary transformations. When the time variation is adiabatic and 
cyclic, the Yang phase reduces to the Berry phase. 
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